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ABSTRACT 
A boundary element method (BEM) formulation for the solution of transient conduction-convection 
problems is developed in this paper. A time-dependent fundamental solution for moving heat source 
problems is utilized for this purpose. This reduces the governing parabolic partial differential equations 
to a boundary-only form and obviates the need for any internal discretization. Such a formulation is also 
expected to be stable at high Peclet numbers. Numerical examples are included to establish the validity 
of the approach and to demonstrate the salient features of the BEM algorithm. 
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INTRODUCTION 

The BEM (boundary element method) is a powerful general-purpose method1-4. It is far 
more tolerant of aspect-ratio degradation than the FEM and can yield secondary variables as 
accurate as the primary ones. In the BEM, the internal equations are applied pointwise. Thus, 
sharp temperature gradients over the domain may be easily captured. Mukherjee and Morjaria5 

compared the efficiency and accuracy of the BEM and FEM for the Laplace equation. They 
found that the BEM results are more accurate than the FEM for the same level of discretization. 
This implies that, for the same desired level of accuracy, the BEM requires a coarser mesh. On 
the other hand, the FEM's accuracy is very sensitive to the internal mesh. Also, the accuracy 
of the BEM does not change appreciably with the number of internal sampling points. 

Several researchers have investigated the conduction-convection problem by FEM6-8.The 
traditional Galerkin formulation, however, produces an unstable solution. A Petrov-Galerkin 
approach produces a stable solution, but there are noticeable differences when compared to 
analytical solutions. The discrepancy also gets worse as the Peclet number increases. 

The BEM has been applied to several steady-state and transient diffusion problems including 
the effects of moving boundaries and phase changes9-14. Tanaka et al.15 have also obtained 
mixed boundary element solutions of steady-state convection-diffusion problems in three 
dimensions using the moving heat source Jaeger solution as the fundamental solution. They 
found the accuracy of the BEM solutions, compared to exact solutions, to be almost independent 
of the Peclet number. The BEM solutions were also unconditionally stable in space. These 
features make the BEM superior to domain-type numerical techniques, which have a criterion 
for numerical stability and whose accuracy depends to some extent on the Peclet numbers. 

Recently16-19, the thermal aspects and their sensitivities in steady-state machining processes, 
using a BEM formulation based on the fundamental solution of the convection-diffusion operator, 
were investigated. Their analyses showed no indication of false diffusion. The BEM, by virtue 
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of its ability to determine boundary quantities accurately and internal quantities pointwise, has 
proved very effective in capturing the sharp temperature gradients in various steady-state 
machining processes. 

The boundary element method has also been applied to transient convection-diffusion problems 
by various researchers. Curran et al.20 used a time-dependent fundamental solution defined only 
for the diffusive terms. This requires a domain-type solution strategy. Aral and Tang14 use a 
secondary reduction BEM (SR-BEM) algorithm to reduce the BEM finite difference 
computations for parabolic partial differential equations to a boundary-only form. Their 
algorithm uses the fundamental solution for the steady-state diffusion operator and requires 
internal discretization. The SR-BEM algorithm described by Aral and Tang is essentially a 
procedure for eliminating the internal degrees of freedom efficiently. Accordingly, the temporal 
features of a transient problem and its associated time integration schemes are not addressed. 
Typically, very small time steps are needed when a transient problem is attempted by employing 
a steady-state fundamental solution2. Moreover, such an algorithm is susceptible to inherent 
numerical oscillations and false diffusion. In view of these, a transient BEM formulation based 
on the time-dependent fundamental solution of the transient convection-diffusion operator is 
developed in the present work. This reduces the governing parabolic partial differential equation 
to a boundary-only form. This paper begins with a presentation of the proposed BEM formulation 
for transient convection-diffusion problems. A description of the numerical implementation for 
planar problems follows. Numerical examples are included to demonstrate the salient features 
of the BEM algorithm and to establish the validity of the proposed technique. 

BOUNDARY ELEMENT FORMULATION 

The governing equation for the transient conduction-convection problem may be expressed as: 

Here, vi is the convective velocity and K = k/pc is the thermal diffusivity. It is assumed that 
thermal conductivity, specific heat, and density remain constant. For situations involving spatial 
variations of K, the domain B may be divided into several zones and the thermal diffusivity K 
may be assumed to be piecewise constant over each of these zones. A BEM formulation for 
planar problems is presented in this section. A similar technique may also be used to obtain a 
three-dimensional BEM formulation. 

In the present applications, the convective velocity is assumed to be constant in time and 
space. A boundary-only form of the BEM formulation is developed first. Cases involving spatially 
nonuniform convection velocities may also be analyzed by using zoning, such that the velocity 
is constant in each zone, or by introducing a domain integral incorporating the velocity gradients. 
The zoning approach has been used previously17,18 for steady-state machining processes. 

For constant velocities of convection, we may introduce a coordinate system with its axes 
oriented in parallel and normal directions to the velocity vector. Without any loss of generality, 
the governing equation may be expressed as: 

where the x1 direction is along the direction of the resultant convection velocity. Pe is the Peclet 
number (Pe = VL/K). Here, V is the convective velocity in the x1 direction, and L is a 
characteristic length. The boundary conditions are: 

T(x,t)= (x,t) on ΓT (3) 
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and 

Equation (2) applies to an Eulerian reference frame that remains spatially fixed while the material 
flows through it. The convective term represents the energy transported by the material as it 
moves through the reference frame. The surface flux includes a contribution from convective 
cooling losses, q(c), which may be written as: 

q(c)(x,t) = Nu[T(x , t ) -T x ] (5) 
Tx represents the ambient temperature and Nu is the Nusselt number (hL/k), where h is the 
convective heat transfer coefficient. 

Let us also consider the adjoint equation: 

where p and q are a source point and field point, respectively, in the domain (P and Q represent 
a source point and field point, respectively, on the boundary), τ is the final time, and t is the 
time variable. 

Applying the divergence theorem, and following previous procedures15,17,18, an integral 
representation of the governing equation may be obtained as: 

The normal flux at the boundary q(Q, t) is equal to ∂T/∂nQ(Q, t). In deriving (7), it is assumed that: 
T(x,0)=0 (8) 

Thus, T(x, t) represents the temperature rise from a uniform initial temperature in the body. A 
domain integral appears in (7) if the initial temperature distribution is not uniform11. However, 
in many practical problems, the initial temperature distribution remains uniform and, for 
simplicity, this is assumed here. 

The fundamental solution G(p, Τ; q, t)21 is given as: 

for planar problems. This may also be written as: 

Here, r is the Euclidean distance from the source point to the field point. In (10), the first 
exponent represents the conduction effects, while the second and third exponents represent the 
effects due to convection and to transient convection, respectively. 

A boundary integral equation for the transient conduction-convection problem may now be 
obtained by taking the limit as the source point p, inside the domain approaches the point P 
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on the boundary (p → P). This gives: 

The coefficient C(P), in general, depends on the local geometry at P. If the boundary is locally 
smooth at P, C = 1/2 for two-dimensional problems. Otherwise, it may be evaluated indirectly1-3. 
In the present work, the coefficient C(P) at a geometric corner is evaluated directly3 in a Cauchy 
principal value sense. 

NUMERICAL IMPLEMENTATION 

Discretization 
Numerical implementation of the BEM equations (7), (11) for the transient conduction-

convection problem is discussed in this section. The first step is the discretization of the boundary 
of the two-dimensional domain into boundary elements. In this case, discretizations in both 
time and space are needed. Accordingly, the boundary is discretized into N spatial boundary 
elements and the time dimension is subdivided into F time steps. A linear interpolation in space 
and time is used here for temperature and heat flux: 

and 

where ψ and ф are interpolation functions in space and time, respectively. 
A discretized version of the boundary integral equation (11) may now be written as: 
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In equation (14), T(PM) represents the temperature at a point P that coincides with node M. 
are nodal values of temperature and flux at time tk. 

Defining (γ = 1,2): 

and 

as the coefficient matrices relating the Mth source point with the jth boundary element, we may 
express (14) in a matrix form: 

Assembled nodal coefficients are formed as: 

and 

Here, γ = 1 or 2 represents the first or second node of the spatial discretization for the 
corresponding boundary element. The associated time integration scheme is discussed in detail 
later. 

Integrals of kernels over the elements in (14)—(16) must be obtained carefully. Details of the 
integration procedure are discussed in a later section. 

At each time step and at each location over the entire boundary of the domain, either T or 
q (or a combination of T and q) is prescribed for a well-posed problem. Also, at each time step, 
T and q are known at every location on the boundary for all previous time steps. Equation 
(17) may then be rearranged as: 

where Fi is the vector formed by multiplying the known variables by the appropriate coefficient 
matrix at the final time. Equation (20) may now be used to solve for the unknown variables 
at the final time. 

Integration of kernels in time and space 
As observed from equation (10), as t approaches the final time τ, the quantity (τ — t) approaches 

zero. This quantity, (τ — t), appears in the denominator of the expression for G(P, τ; Q, t) and 
∂G/∂nQ(P, τ; Q, t), as well as in the denominator of one of the exponents. So, G(P, Τ; Q, t) or 
∂G/∂nQ(P, τ; Q, t) is regular as t approaches τ for r ≠ 0. However, a singularity occurs if r → 0 
at the same time as t → τ. This is true for the diagonal terms of the G or ∂G/∂nQ kernel (when 
P ≡ Q) at the final time. 

In the present work, the regular integrands (for all terms when t < τ and for off-diagonal terms 
when t = τ) are integrated numerically. The time integrations are performed by a quadrature 
scheme for improper integrals19, while the spatial integrations are done by Gauss quadrature. 
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It is important to note here that the order of the singularity for the diagonal term at the final 
time is not known a priori. In the present work, the term exp[—Pe2/4(τ — t)] appearing in both 
G and ∂G/∂nQ is first expanded in a Taylor series in (τ — t). We obtain: 

and 

Integrating фkG(k = F — 1, F) in time with tk = tF, we get: 

where 

with 

Also, 
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with 

and 

It should be noted here that as zk approaches zero, E1(zk) approaches ln(zk). Accordingly, the 
order of singularity in G is of ln(r) in spatial dimensions and this occurs at the final time. 

Similarly, time integration of фk ∂G/∂nQ gives: 

Here, 

Observations of the terms involved in J1 also reveal that the order of singularity in ∂G/∂nQ is 
1/r in spatial dimensions, and this also occurs at the final time. 

After the orders of spatial singularities (at t = Τ) in G and ∂G/∂nQ are determined, appropriate 
integration schemes may be used for the diagonal terms at the final time step. Since the kernel 
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G contains a ln r singularity, a numerical scheme for integrating improper integrals22 utilizing 
Romberg integration as an open interval is used for spatial integration of the singular terms of 
G. The kernel ∂G/∂nQ, however, contains stronger singularities of order 1/r. The diagonal terms 
of ∂G/∂nQ integrated analytically using published methods.1-3 

NUMERICAL RESULTS 

Figure 1 shows a schematic diagram of the test problem. The boundary conditions are: 
T = 1, x1 = 0, 0 x2 1 (25a) 
T = 0, x1 = 1, 0 x2 1 (25b) 
q = 0, x2 = 0, 0 x1 1 (25c) 
q = 0, x2 = 1, 0 x1 1 (25d) 

and the initial condition is: 
T = 0, t = 0 (25e) 

The boundary conditions specified above represent a one-dimensional problem. A closed-form 
analytical solution is obtained using the method of separation of variables. This may be expressed 
as: 

where 

A standard successive-over-relaxation finite difference method (SOR) is also used to solve (2) 
subject to boundary and initial conditions in (25a-e). In this finite difference solution, the 
conduction term is approximated by a central difference, the convective term is modelled by an 
upwind difference, and the transient part is modelled by the Crank-Nicolson technique. 

Figure 2 shows the transient fields for Pe = 20 for five different times. The BEM results are 
obtained using a uniform mesh size of 0.1 and a constant time increment of 0.01. The SOR 
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results were obtained using the same uniform mesh size and time increment. It can be observed 
that the BEM results closely match the analytical results. Further, the BEM performs much 
better in predicting the temperature profiles. In SOR, the false diffusion caused by the upwind 
difference of the convective term introduces large errors in the temperature field. The results 
from SOR using a uniform mesh size of 0.01 and time increment of ∆t = 10 - 4 are plotted in 
Figure 3. It is clear that the SOR results can be improved by reducing the grid size. However, 
the computation time required to obtain these fine-mesh results is considerably longer because 
of the decrease in ∆x and ∆t. Moreover, these refinements make the computational time 
prohibitively large for higher Peclet numbers. In the BEM formulation, the Green's function 
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used is the transient moving heat source solution21 which gives a better approximation of the 
convective term. Consequently, false diffusion is minimized15,17. 

As the Peclet number increases, the problem becomes convection dominated. The simple 
Galerkin formulation in FEM produces an unstable solution. The Petrov-Galerkin method1 

for steady-state problems does obtain a stable solution. Yu and Heinrich8 extended the 
Petrov-Galerkin formulation to a transient convection transport equation. The Petrov-Galerkin 
formulation produces a stable solution, however, the discrepancy in maximum temperature with 
the analytical solution is noticeable. 

To illustrate the capability of the BEM formulation in handling high Peclet number convection, 
the transient fields for Pe = 2000 for five different times are plotted in Figure 4. The results were 
obtained for a uniform mesh size of 0.1 and a constant time increment of 10 - 5 for the BEM 
calculation and a uniform mesh size of 0.01 and a constant time increment of 10 -5 for the SOR 
calculation. It can be observed that there is a very good match between the BEM results and 
those of the asymptotic solutions. The analytical solution given in (26) fails to converge for 
Pe = 2000. Consequently, we have tried to compare it with the asymptotic solution. The detailed 
derivation of the asymptotic solution is given in the Appendix. In the limit of large Pe numbers, 
the convection term dominates and the problem can be solved using asymptotic expansion. The 
outer region is dominated by convection, whose solution is a sharp temperature front moving 
downstream with the wave velocity. Around the wave front, the inner region, scaled like Pe - 1 / 2 , 
is dominated by diffusion. The solution can be expressed as: 

Figure 4 shows that the phenomenon is accurately captured by the BEM; however, the SOR is 
totally inadequate. It should be pointed out that the time increment was reduced from 10 -2 

(Pe = 20) to 10-5 (Pe = 2000) in the BEM calculations. The BEM formulation is unconditionally 
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Table 1 Relationship between ∆t and maximum Pe's 

At 

1 x 10 -2 

1 x 10-3 

1 x 10-4 

1 x 10 -5 

Maximum 
Pe 

100 
300 

1,000 
2,100 

BEM 

AX 

0.1 
0.1 
0.1 
0.1 

SOR 

Maximum 
Pe 

10 
30 

100 
300 

AX 

0.1 
0.03 
0.01 
0.003 

stable. It was observed that the term (Pe2/4)n(τ — t)n in (21) and (22) has a tendency to create 
an overflow in the computer for high Peclet numbers. This may be avoided by choosing a time 
increment so that the above term is less than the overflow capacity of the computer. Table 1 
shows the maximum Peclet numbers for a fixed time increment. The table was generated by 
fixing the time increment and increasing the Peclet number until the program terminated with 
an overflow error message. Double precision was used in these calculations. In the case of SOR, 
the time increment is limited by the stability criterion of the Courant number being less than 
123. The Courant number may be defined as Pe(∆t/∆x). As Pe increases, the grid size has to 
be decreased to capture the high gradients. This can be observed from the results of Pe = 20 
given in Figures 2 and 3. In order to capture the steep gradient, the grid size should be 0.01 
and the time increment reduced to 10 -4. As a result, the time increment should be restricted to 
∆t ~ Pe - 2 . 

In order to compare the accuracies of the BEM and SOR methods, we define the following 
errors. The error at each time step is defined as: 
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Table 2 RMS error of BEM and SOR results 

Pe 

1.0 

5.0 

10.0 

20.0 

t 

0.01 
0.03 
0.05 
0.07 
0.09 
0.01 
0.03 
0.05 
0.07 
0.09 
0.01 
0.03 
0.05 
0.07 
0.09 
0.01 
0.03 
0.05 
0.07 
0.09 

RMS error 

BEM 

4.77801 x 10-2 

1.38802 x 10-2 

9.01710 x 10-3 

7.04800 x 10-3 

5.77009 x 10-3 

5.28524 x 10-2 

1.90902 x 10-2 

1.42936 x 10-2 

1.17259 x 10-2 

9.41962 x 10-3 

5.66623 x 10-2 

2.52636 x 10-2 

1.97946 x 10-2 

1.39803 x 10-2 

8.56032 x 10-2 

5.51768 x 10-2 

3.23170 x 10-2 

1.44366 x 10-2 

3.44543 x 10-3 

1.55643 x 10-3 

SOR 

7.78740 x 10-2 

2.08699 x 10-2 

1.14195 x 10-2 

7.01487 x 10-3 

4.44575 x 10-3 

8.86331 x 10-2 

1.92125 x 10-2 

1.04627 x 10-2 

8.56085 x 10-3 

8.38559 x 10 -3 

0.109351 
3.55529 x 10-2 

2.92629 x 10-2 

3.64733 x 10-2 

4.92900 x 10-2 

0.164496 
9.54526 x 10-2 

9.56546 x 10-2 

8.66238 x 10-2 

7.89693 x 10-2 

where T is the analytical solution, Ti is the approximate solution, and N is the number of nodes. 
The errors of the centerline temperature (y = 0.5) for both BEM and SOR results are tabulated 
in Table 2. It can be observed that, for the same mesh size, BEM results have smaller errors 
than the SOR, except for the case of Pe = 5.0. In an attempt to determine the reason, temperature 
fields at various time steps were plotted, Figure 5. It can be observed that the SOR prediction 
gives a lower temperature at the beginning of the domain and a higher temperature at the end, 
resulting in a smaller error (28). 

CONCLUSIONS 

A boundary element method (BEM) formulation for two-dimensional transient conduction-
convection problems is developed in this paper. The BEM formulation is based on the 
time-dependent fundamental solution of the transient conduction-convection operator. Thus, 
the governing parabolic partial differential equation is reduced to a boundary-only form that 
does not require any domain discretization. This makes the proposed algorithm stable and 
avoids any false diffusion. Irregular boundaries may be easily handled by the BEM. The 
boundary-only formulation also requires a small amount of core memory. 

The two-dimensional BEM algorithm is applied to solve a one-dimensional problem whose 
analytical solution is possible by separation of variables. A standard successive-over-relaxation 
finite difference method (SOR) is also applied to the same problem. All of these results are 
compared to each other. The asymptotic solution for large Pe, where the method of separation 
of variables fails, is also obtained and compared to BEM and SOR results. It is found that the 
BEM provides a more accurate solution than SOR for the same mesh size. This implies that 
the SOR will require a finer mesh size for the same degree of accuracy. 
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APPENDIX: ASYMPTOTIC SOLUTION IN THE LIMIT OF 
LARGE PECLET NUMBERS 

The one-dimensional form of governing equation (2) can be expressed as: 

The initial boundary conditions are: 
t = 0, T = 0 (A2) 
t > 0, x = 0, T = 1 (A3) 
t > 0, x = 1, T = 0 (A4) 

It is more convenient to express the equation in the dimensionless form using the convective 
time scale: 

t* = t Pe (A5) 
The governing equation becomes: 

In the limit of large Pe numbers, the outer region is governed by the one-dimensional wave 
equation: 

subject to the initial and boundary conditions: 
t* = 0, T° = 0 (A8) 
t* > 0, x1 = 0, T° = 1 (A9) 

The solution is a temperature front: 

We now focus on the inner region. Introduce the inner variables: 

η = (x1 - t*) Pe1/2 (A11) 
The zeroeth order is governed by: 

The initial and boundary conditions are: 

t* > 0, Ti = 1 as η → - ∞ (A14) 
t* > 0, Ti = 0 as η → ∞ (A15) 
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The matching conditions are incorporated in equations (A14), (A15). In the original independent 
variables, the solution can be expressed as: 

This inner solution is in fact valid for the entire region, provided that Pe is large. 
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